Automated Functional Annotation and Necessary Tools

J. Craig Venter Eukaryotic Annotation and Analysis Course

Functional Annotation Overview

- What is functional annotation?
- Steps we take to annotate genes.
- Software tools used for functional annotation.

Functional Annotation and its Goals

- Functional annotation in genomics is about classifying and attributing the identified structural elements.
- Goals
 - Assigning names of gene products.
 - Interpreting functions of genes within an organism if possible.
 - Classifying the proteome into protein families.
 - Identifying the enzymes and assigning the EC numbers in an organism.
 - > Assigning Gene Ontology (GO) terms for genes.
 - Generating Metabolic pathways for an organism.
 - Important to know what software tools we need and how to use them for optimum result.

J. Craig Venter

Steps in Functional Annotation

- Analyze the gene structure for accuracy.
- Extract the gene product sequence.
- Search the sequences through various software tools of different algorithms against different database sources.
- Optimize the parameters of the tools for efficient annotation.
- Critically evaluate the computationally derived annotation.
- Maintain and display the annotation data.
- J. Craig Venter

Basic Searches to Run

- BLAST (nucleotide or protein homology)
- TmHMM (Transmembrane domains)
- SignalP (signal peptide cleavage sites)
- TargetP (subcellular location)
- HMMer or SAM (searches using statistical descriptions)
 - Pfam (database of protein families and HMMs)
 - > TIGRFAMS (protein family based HMMs)
 - SCOP (Structural domains)
- CDD (NCBI's Conserved Domain Database)
- Prosite (biologically significant sites, patterns and profiles)
- Interpro (protein families, domains and functional sites)
- Others as needed
- J. Craig Venter

Automated Searches Through Pipeline

- The searches are run as a pipeline using Ergatis, a workflow system.
- The searches can be run as a pipeline by stringing the different searches together using perl scripts.
- Ergatis: <u>http://ergatis.sourceforge.net/</u>

J. Craig Venter

Primary Search Tool

- ♦ BLAST Basic Local Alignment Search Tool
 - Finds regions of local similarity between sequences by pair-wise alignment.
 - Compares nucleotide or protein sequences to sequence databases and calculates the statistical significance of matches.
 - Used to infer functional and evolutionary relationships between sequences.

J. Craig Venter

Blast Programs

- Different blast programs are available for the BLAST software:
 - blastp: compares an amino acid query sequence against a protein sequence database.
 - blastn: compares a nucleotide query sequence against a nucleotide sequence database.
 - blastx: compares a nucleotide query sequence translated in all reading frames against a protein sequence database. You could use this option to find potential translation products of an unknown nucleotide sequence.
 - **tblastn**: compares a protein query sequence against a nucleotide sequence database dynamically translated in all reading frames.
 - **tblastx**: compares the six-frame translations of a nucleotide query sequence against the six-frame translations of a nucleotide sequence database. It is computationally intensive.
- Which BLAST program to use depends on the query and reference sequences.

J. Craig Venter

Web BLAST

- NCBI Blast http://www.ncbi.nlm.nih.gov/blast/
- WU blast http://genome.wustl.edu/tools/blast/
- Uniprot-swissprot blast http://www.expasy.org/srs5/
- JCVI Projects http://www.tigr.org/tdb/euk/ (follow links to each database)
- The Gene Indices http://compbio.dfci.harvard.edu/tgi/
- Sanger projects http://www.sanger.ac.uk/DataSearch/
- TAIR http://www.arabidopsis.org/Blast/index.jsp
- plasmoDB- http://www.plasmodb.org/plasmo/
- toxoDB: http://www.toxodb.org/toxo
- Flybase- http://flybase.bio.indiana.edu/
- VectorBase- http://www.vectorbase.org/index.php

J. Craig Venter

Command-Line BLAST

- Downloading the program (executables and the databases)
 - > WU BLAST 2.0 (http://blast.wustl.edu/)
 - Options:
 - blastp
 - blastn
 - blastx ...
 - Formatting the database "xdformat –n"
 - New version of WU blast: AB-BLAST (http://www.advbiocomp.com/)
 - > NCBI BLAST (http://www.ncbi.nlm.nih.gov/blast/download.shtml)
 - Formatting the database blastall –p blastp(n/x)
 - Formatting the database "formatdb db_name"

J. Craig Venter

Blast Parameters

- Database: -d
 - Multi-fasta format
 - Indexed database
 - Wu-blast:
 - "xdformat --n"
 - NCBI blast: "formatdb db_name"
 - Database commonly used:
 - AllGroup.nraa
 - Kingdom or species specific (protein, nucleotide, and genome)
 - customized
- Query sequences: -i
 - Single fasta (or multi-fasta) file
 - Clean unknown sequence characters

J. Craig Venter

BLAST Parameters

- ♦ -e: e value, significance of a match
 - value = the chance of being a random hit (match by chance)
 - > Default = 10 (NCBI blastall 2.2.15)
 - Commonly use 1e-20 for nucleotide; 1e-5 for peptides
 - > What affects the e value:
 - Short sequences or domain hits may have a higher e value even when the hits are significant.
 - Database size

J. Craig Venter

E Value Example

Query= JCVI_SCAF_1101667073875_103_656_orientation=reverse (184 letters)			
Database: /local/scratch/pandaadm/panda_run/syncpanda/03210 oup/BacterialGroup.niaa 1,4 <u>10.935 sequences: 450,</u> 201,350 total letters.	7/group	/Bacteria]	lGr
Searching1020304050607080	.90	100% done	
		Smalles† Sum	t.
	High	Probabili	ity
Sequences producing High-scoring Segment Pairs:	Score	P(N)	Ν
GB ABI87029.1 115281512 CP000440 methyltransferase FkbM f SP Q28JB2 Y4284_JANSC Putative methyltransferase Jann_428	442 278	4.1e-41 9.8e-24	1 1
Query= JCVI_SCAF_1101667073875_103_656_orientation=reverse (184 letters)			
Database: /local/scratch/pandaadm/panda_run/syncpanda/03210 1Group.niaa 3,493,351 sequences; 1,215,183,409 total letters.	7/group	/AllGroup/	/Al
Searching1020304050607080	.90	100% done	
	1202201017	Smallest Sum	t.
Sequences producing High-scoring Segment Pairs:	High Score	Probabil: P(N)	ity N
RF YP_773363.1 115351524 NC_008390 methyltransferase FkbM SP Q28JB2 Y4284_JANSC Putative methyltransferase Jann_428	442 278	1.0e-40 2.4e-23	1 1

J. Craig Venter

E-Value Example

Query= JCVI_SCAF_1101667073875_103_656_orientation=reverse (159 letters)			
Database: /local/scratch/pandaadm/panda_run/syncpanda/032107 oup/BacterialGroup.niaa 1,410,935 sequences; 450,201,350 total letters.	/group	/Bacteria	lGr
Searching1020304050607080	90	100% done	
Sequences producing High-scoring Segment Pairs:	High Score	Smalles Sum Probabil P(N)	t ity N
GB ABI87029.1 115281512 CP000440 methyltransferase FkbM f	385	4.5e-35	1
SP/Q28JB2/Y4284_JANSL Putative methyltransferase Jann_428	222	8.4e-18	1
Query= JCVI_SCAF_1101667073875_103_656_orientation=reverse (159 letters)			
Database: /local/scratch/pandaadm/panda_run/syncpanda/032107 1Group.niaa 3,493,351 sequences; 1,215,183,409 total letters.	//group	i∕AllGroup.	/Al
Searching1020304050607080	90	100% done	
	104250000	Smalles Sum	t
Sequences producing High-scoring Segment Pairs:	High Score	Probabil P(N)	ity N
RF YP_773363.1 115351524 NC_008390 methyltransferase FkbM SP Q28JB2 Y4284_JANSC Putative methyltransferase Jann_428	385 222	1.1e-34 2.1e-17	1 1

J. Craig Venter

BLAST Parameters

- -F: mask low complexity sequences (DUST with blastn or SEG with others).
 - Low complexity sequence hits may mislead the users to give false functional assignment.
- -M: Matrix. Default = BLOSUM62
 - BLOSUM62 is among the best of the available matrices for detecting weak protein similarities.
 - The <u>BLOSUM</u> matrix assigns a probability score for each position in an alignment that is based on the frequency with which that substitution is known to occur among consensus blocks within related proteins.
 - Other supported options include PAM30, PAM70, BLOSUM80, and BLOSUM45.

J. Craig Venter

BLAST Parameters

- -v: number of one-line descriptions
- -b: number of alignments to show
- ♦ -W: default is 11 for blastn, 3 for other programs.
- -m: 8 tabular output

BLAST Command

- A typical and simple blast command at unix prompt
- >blastp -d /path/AllGroup.niaa -i /path/query_seq.fasta -v 3 -b 3 -e 1e-20 -o blastp_query_vs_db.out
 - -d: AllGroup.niaa as db
 - -i: query_seq.fasta as query
 - -v: one-line description for top 3 hits
 - -b: pair-wise alignment for top 3 hits
 - -e: 1e-20
 - -o: out file named "blastp_query_vs_db.out"

J. Craig Venter

BLAST Tabular Output

• To get the tabular file for each blast hit above the cutoff

>btab blast_output_file (NCBI blast)

example: >btab blastp.out

>BPbtab blast_output_file (wu-blast)

- \Rightarrow "blastp.out.btab" will be automatically generated
- Columns in the btab file:

13:07 Thu_Jun14: pfafoo_dir :>more pfa_pexel_part2.out.btab															
Plasmodium_falciparum_3D7 MAL10 PF10_0003 Pf/1-345	179	BLASTP	pexel_pfa1.pep	2296.m00364	1	147	1	147	85.7	85.7	633	248	0 null	345	5e-67
Plasmodium_falciparum_3D7 MAL10 PF10_0004 Pf/1-371	179	BLASTP	pexel_pfa1.pep	2296.m00363	1	170	1	170	100.0	100.0	901	351	0 null	371	5e-98
Plasmodium_falciparum_3D7 MAL10 PF10_0005 Pf/1-407	179	BLASTP	pexel_pfa1.pep	2296.m00362	1	179	1	179	87.7	87.7	819	320	0 null	407	1e-88
Plasmodium_falciparum_3D7/MAL10/PF10_0006/Pf/1-362	179	BLASTP	pexel_pfa1.pep	2296.m00361	1	179	1	179	54.2	54.2	429	169	0 null	361	2e-43
Plasmodium_falciparum_3D7 MAL10 PF10_0008 Pf/1-98	98	BLASTP	pexel_pfa1.pep	2296.m00359	1	98	1	98	79.6	79.6	390	154	0 null	98	2e-39
Plasmodium_falciparum_3D7 MAL10 PF10_0014 Pf/1-194	179	BLASTP	pexel_pfa1.pep	2296.m00354	23	179	23	179	91.7	91.7	758	296	0 null	193	2e-81
Plasmodium_falciparum_3D7 MAL10 PF10_0017 Pf/1-284	179	BLASTP	pexel_pfa1.pep	2296.m00351	1	179	1	173	78.2	78.2	657	257	0 null	278	9e-70
Plasmodium_falciparum_3D7/MAL10/PF10_0018/Pf/1-921	179	BLASTP	pexel_pfa1.pep	2296.m00350	1	179	1	179	68.2	68.2	594	233	0 null	921	2e-62
Plasmodium_falciparum_3D7 MAL10 PF10_0020 Pf/1-763	179	BLASTP	pexel_pfa1.pep	2296.m00348	1	179	1	179	100.0	100.0	927	361	0 null	763	1e-101
Plasmodium_falciparum_3D7 MAL10 PF10_0021 Pf/1-266	179	BLASTP	pexel_pfa1.pep	2296.m00347	1	179	1	179	89.4	89.4	833	325	0 null	266	4e-90
Plasmodium_falciparum_3D7 MAL10 PF10_0023 Pf/1-276	179	BLASTP	pexel_pfa1.pep	2296.m00345	1	179	1	179	93.3	93.3	868	338	0 null	276	3e-94
Plasmodium_falciparum_3D7 MAL10 PF10_0024 Pf/1_469	179	BLASTP	pexel_pfa1.pep	2296.m00344	1	179	1	179	94.4	94.4	889	347	0 null	469	1e-96
Plasmodium_falciparum_3D7 MAL10 PF10_0025 Pf/1-631	179	BLASTP	pexel_pfa1.pep	2296.m00343	18	179	18	179	92.6	92.6	760	297	0 null	631	1e-81
Plasmodium_falciparum_3D7 MAL10 PF10_0027 Pf/1-427	179	BLASTP	pexel_pfa1.pep	2296.m00392	1	179	1	179	100.0	100.0	963	375	0 null	427	1e-105

1-5: query identifier, query length, Program, database, db_subject identifier,

- 6-9: query hits coordinates, subject hits coordinates
- 10-12: identities, positives (similarity), blast score
- 13-14: position in blast output file itself
- 15-16: frame, strand
- 17-18: subject length, e-values

Domain Searches

- Tools to use for domain searches:
 - > HMMER, HMMPFAM: http://hmmer.janelia.org/
 - SAM (Sequence Alignment and Modeling System) http://compbio.soe.ucsc.edu/sam.html
- Databases of domains to search:
 - > Pfam: http://www.sanger.ac.uk/Software/Pfam/

> TIGRFAMs:

http://www.jcvi.org/cms/research/projects/tigrfams/ove rview/

> SCOP: http://scop.mrc-lmb.cam.ac.uk/scop/

Pfam HMM Searches

- HMMer is a software suite for making and using Hidden Markov Models (HMMs) of biological sequences.
- Hidden Markov models (HMMs) are statistical models produced from a multiple sequence alignment of a sequence family which should be the functionally significant segments of the sequence.
- Protein sequences are searched against the Pfam HMM databases to identify the proteins with important domain conservation above significant score.
 - J. Craig Venter

Pfam

http://www.sanger.ac.uk/Software/Pfam/

For each family in Pfam you can:

- Look at multiple alignments.
- View protein domain architectures.
- Examine species distribution.
- Follow links to other databases.
- View known protein structures.

SCOP-UK

SCOP-USA

MSD

TIGRfams

http://www.jcvi.org/cms/research/projects/tigrfams/overview/

TIGRFAMs: A collection of protein families featuring curated multiple sequence alignments, Hidden Markov Models (HMMs) and associated information designed to support the automated functional identification of proteins by sequence homology.

You can use the TIGR fam page to see

- The curated seed alignment for each TIGRFAM.
- The full alignment of all family members.
- The cutoff scores for inclusion in each of the TIGRfams.

_			tig	igr fa	lies		
2	TIGR FAMs Page	Text Search	HMM Search Dov	vnload	CMR Home Help		
		Acces	HMM Profilesion #: TIGR00	e Page 262 Ni	ame: trpA		
	Both TIGRFAMs and Pfams are displayed on this page. TIGRFAMs and Pfams are based on Hidden Mark Models or HMMs. An HMM is a statistical model for any system that can be represented as a succession or transitions between discrete states. Scores are reported both in bits of information and as an E-value. See below for more information on this TIGRFAM or Pfam and its HMM.						
	trpA Informatic this family and tr number, click on the Role Categ	n: See below for he average score the EC Number ory link.	detailed information on of genes/proteins in this link. To view more inforr	this family, ir family. To vi nation on the	ncluding the cutoff score for inclusion ew all genes with the same EC e Role Category for this family, click c		
	Accession:	TIGR00262	Name: trpA		lsology equivalog Type:		
	Common Name:	tryptophan syntha	se, alpha subunit				
	Noise Cutoff:	-5.00	Trusted 2.50 Cutoff:		Avg. Score: 391.56 +/- 24.74		
	EC Number:	<u>4.2.1.20</u>	HMM length: 262				
	Relationship:	InterPro assign	ment: <u>IPR002028</u>				
	Role Category:	Mainrole : <u>Ami</u>	ino acid biosynthesis	Subr	ole: <u>Aromatic amino acid family</u>		
	Gene	GO [.] 0000162	process	tryptophan	piosynthesis		
	Ontology (GO) Terms	<u>GO:0004834</u>	function	tryptophan	synthase activity		
	Author(s):	Loftus BJ	Created: Apr 2 2:09F	20 1999 PM	Last Sep 23 2003 Modified: 4:23PM		

Command-line HMM Searches

- Download HMMER software package which includes the hmm search program.
- Download Pfam and TIGRFAM databases.
- Process the protein sequences against the desired dataset of HMMs.
- Command:
 - > Hmmpfam query_file(protein sequences) database_file(HMM) > output_file
 - Easy to generate tab delimited file from the hmm output.

J. Craig Venter

Conserved Domain Database (CDD)

- NCBI's Conserved Domain Database(CDD) is a collection of multiple sequence alignments for ancient domains and full-length proteins.
- CDD contains protein domain models imported from outside sources, such as Pfam, SMART, COGs (Clusters of Orthologous Groups of proteins), PRK (PRotein K(c)lusters), and are curated at NCBI.
- Models are linked to other NCBI databases, including protein sequences, known structures, taxonomy and hierarchical classification.

CD-Search

- The CD-Search service is a web-based tool for the detection of conserved domains in protein sequences.
- The CD-Search service uses RPS-BLAST to compare a query protein sequence against conserved domain databases.
- You can have graphical display as output.
- http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb. cgi

Command-line CDD Search

- We can run RPS-BLAST locally on command line.
- A standalone version of RPS-BLAST can be downloaded: ftp://ftp.ncbi.nih.gov/toolbox).
- Pre-formatted search databases, which have already been processed by Formatrpsdb, are available on the CDD FTP site for download.

J. Craig Venter

Motif Searches

- SignalP: <u>http://www.cbs.dtu.dk/services/SignalP</u>
- TargetP: <u>http://www.cbs.dtu.dk/services/TargetP</u>
- Prosite: <u>http://expasy.org/tools/scanprosite</u>
- Interpro: <u>http://ebi.ac.uk.interpro</u>
- tmHMM: <u>http://www.cbs.dtu.dk/services/TMHMM/</u>

All the above programs offer the downloadable software packages and the required dataset which we can used as command-line to streamline the search result for the desired output.

J. Craig Venter

SignalP

SignalP predicts the presence and location of signal peptide cleavage sites in amino acid sequences from different organisms.

http://www.cbs.dtu.dk/services/SignalP/

 The method is based on a combination of artificial neural networks and hidden Markov models.

Signal 93.0 server predicts the presence a prokaryotes, and eukaryotes. The method i neural networks and hidden Markov models View the version history of this server. All the	nd location of signal peptide cleavage sites in amino acid incorporates a prediction of cleavage sites and a signal p 3. e previous versions are available on line, for comparison a	sequences from different organisms: Gram-j peptide/non-signal peptide prediction based o and reference
Background	Article abstracts	Instructions
SOBMISSION		
Paste a single sequence or several sequen	ces in <u>FASTA</u> format into the field below:	
Sunknown Jedes segunti nrotei	n 🔺	
panknown keaco acgypti protei.		
MASREAVRRAVQNVRPILSVDREEARKRV	LNLYKAWYRQIPYIVMDYDIPKSVEQCREKL	
MASREAVRRAVQNVRPILSVDREEARKRV. REEFLKHKNVTDIRVIDMLVIKGML	LNLYKAWYRQIPYIVMDYDIPKSVEQCREKL	
MASREAVRRAVQNVRPILSVDREEARKRV. REEFLKHKNVTDIRVIDMLVIKGML	LNLYKAWYRQIPYIVMDYDIPKSVEQCREKL	
MASREAVRRAVQNVRPILSVDREEARKRV REEFLKHKNVTDIRVIDMLVIKGML	LNLYKAWYRQIPYIVMDYDIPKSVEQCREKL	
MASREAVRRAVQNVRPILSVDREEARKRV REEFLKHKNVTDIRVIDMLVIKGML Submit a file in <u>FASTA</u> format directly from y	LNLYKAWYRQIPYIVMDYDIPKSVEQCREKL	
MASREAVRRAVQNVRPILSVDREEARKRV REEFLKHKNVTDIRVIDMLVIKGML Submit a file in <u>FASTA</u> format directly from y	LNLYKAWYRQIPYIVMDYDIPKSVEQCREKL	Granhice
MASREAVRRAVQNVRPILSVDREEARKRV REEFLKHKNVTDIRVIDMLVIKGML Submit a file in <u>FASTA</u> format directly from y Organism group	LNLYKAWYRQIPYIVMDYDIPKSVEQCREKL	Graphics
MASREAVRRAVQNVRPILSVDREEARKRV REEFLKHKNVTDIRVIDMLVIKGML Submit a file in <u>FASTA</u> format directly from y Organism group © Eukaryotes	LNLYKAWYRQIPYIVMDYDIPKSVEQCREKL	Graphics 〇 No graphics
MASREAVRRAVQNVRPILSVDREEARKRV REEFLKHKNVTDIRVIDMLVIKGML Submit a file in <u>FASTA</u> format directly from y Organism group © Eukaryotes © Gram-negative bacteria	LNLYKAWYRQIPYIVMDYDIPKSVEQCREKL	Graphics ○ No graphics ⓒ GIF (inline)
MASREAVRRAVQNVRPILSVDREEARKRV REEFLKHKNVTDIRVIDMLVIKGML Submit a file in <u>FASTA</u> format directly from y Organism group © Eukaryotes © Gram-negative bacteria © Gram-positive bacteria	LNLYKAWYRQIPYIVMDYDIPKSVEQCREKL	Graphics 〇 No graphics ⓒ GIF (inline) 〇 GIF (inline) and EPS (as lin
MASREAVRRAVQNVRPILSVDREEARKRV REEFLKHKNVTDIRVIDMLVIKGML Submit a file in <u>FASTA</u> format directly from y Organism group © Eukaryotes © Gram-negative bacteria © Gram-positive bacteria Output format	LNLYKAWYRQIPYIVMDYDIPKSVEQCREKL	Graphics ○ No graphics ⓒ GIF (inline) ○ GIF (inline) and EPS (as lin
MASREAVRRAVQNVRPILSVDREEARKRV REEFLKHKNVTDIRVIDMLVIKGML Submit a file in <u>FASTA</u> format directly from y Organism group © Eukaryotes © Gram-negative bacteria © Gram-positive bacteria Output format © Standard	LNLYKAWYRQIPYIVMDYDIPKSVEQCREKL your local disk: Browse Method Neural networks Hidden Markov models Both Truncation Truncate each sequence to max. 70 r	Graphics ○ No graphics ⓒ GIF (inline) ○ GIF (inline) and EPS (as lin residues.
MASREAVRRAVQNVRPILSVDREEARKRV. REEFLKHKNVTDIRVIDMLVIKGML Submit a file in <u>FASTA</u> format directly from y © Eukaryotes © Gram-negative bacteria © Gram-positive bacteria Output format © Standard © Full	LNLYKAWYRQIPYIVMDYDIPKSVEQCREKL your local disk: Browse Method Neural networks Hidden Markov models Both Truncation Truncate each sequence to max. 70 r	Graphics ○ No graphics ⓒ GIF (inline) ○ GIF (inline) and EPS (as lir residues.

TargetP

- TargetP predicts the subcellular location of eukaryotic proteins.
- The location assignment is based on the predicted presence of any of the Nterminal presequences:
 - > chloroplast transit peptide (cTP)
 - mitochondrial targeting peptide (mTP)
 - secretory pathway signal peptide (SP).

http://www.cbs.dtu.dk/services/TargetP/

TargetP 1.1 Server

TargetP 1.1 predicts the subcellular location of eukaryotic proteins. The location assignment is based transit peptide (cTP), mitochondrial targeting peptide (mTP) or secretory pathway signal peptide (SP).

For the sequences predicted to contain an N-terminal presequence a potential cleavage site can also b

NOTE 1: TargetP uses ChloroP and SignalP to predict cleavage sites for cTP and SP, respectively.

NOTE 2: The method has been tested on A. thaliana and H. sapiens sets; see the results.

NOTE 3: This page has been rewritten recently (April 2005).

Instructions

Output format

SUBMISSION

Paste a single sequence or several sequences in FASTA format into the field below:

>unknown Aedes aegypti protein MASREAVRRAVQNVRPILSVDREEARKRVLNLYKAWYRQIPYIVMDYDIPKSVEQCREKL REEFLKHKNVTDIRVIDMLVIKGML

Submit a file in FASTA format directly from your local disk:

Browse...

Organism group

Prediction scope

• Non-plant

Perform cleavage site predictions

O Plant

Cutoffs

no cutoffs; winner-takes-all (default)

C specificity >0.95 (predefined set of cutoffs that yielded this specificity on the TargetP test sets)

C specificity >0.90 (predefined set of cutoffs that yielded this specificity on the TargetP test sets) C define your own cutoffs (0.00 - 1.00): cTP: 0.00 mTP: 0.00 SP: 0.00 other: 0.00

Submit Clear fields

Prosite

Retrieve complete sequences

http://expasy.org/tools/scanprosite/

- PROSITE Database consists of protein domains, families, functional sites, as well as patterns and profiles.
- ScanProsite identifies the occurrence of patterns, profiles stored in the Prosite database.

Home ScanProsite ProRule Documents Downloads Lin

The ScanProsite tool [Help / Commercial users] allows to scan protein sequence(s) (either from UniProt Knowledgebase (Swiss-Prot/TrEMBL) or PDB or provided by the user) for the occurrence of patterns, profiles and rules (motifs) stored in the PROSITE database, or to search protein database(s) for hits by specific motif(s) [Reference / Download ps_scan, the standalone version]. The program PRATT can be used to generate your own patterns. You may either:

• Enter one or more PROSITE accession numbers and/or patterns [1 by line] to search the UniProt Knowledgebase (Swiss-Prot/TrEMBL) and/or PDB databases, OR

- Enter one or more sequences [raw, Swiss-Prot or fasta format] and/or UniProt Knowledgebase (Swiss-Prot/TrEMBL) accession numbers and/or PDB accession numbers [1 by line] to be scanned with all patterns, profiles, rules in PROSITE, OR
- Fill in both fields to find all occurrences of specified motifs in specified sequences.

Protein(s) to be scanned:	PROSITE pattern(s)/profile(s) to scan for:
Enter one or more Swiss-Prot/TrEMBL accession number(s) [AC] (e.g. P00747) and/or sequence identifier(s) [ID] (e.g. ENTK_HUMAN), and/or PDB identifier, and/or paste your own protein sequence(s) in the box below: (leave this box blank to scan PROSITE entrie(s) against selected protein databases)	Enter one or more PROSITE accession number(s) (e.g. PS50240), and/or identifier (s) (e.g. CHEB), and/or type your pattern(s) in PROSITE format in the box below: (leave this box blank to scan sequence(s) against the entire PROSITE database)
	and specify your search limits (only used if no protein data specified) :
	Protein database(s): Swiss-Prot TrEMBL PDB databases including splice variants
V	randomize databases no 🗾 (only with patterns, see help)
Clear	 Taxonomic lineage (OC) / species (OS) filter: (see NEWT Taxonomy ; separate multiple taxa/species with a semicolon, e.g. Eukaryota;
General options:	Escherichia coli; . Does not work on PDB sequences.)
Exclude motifs with a high probability of occurrence	Description (DE) filter: e.g. protease
Show low level score	pattern options:
Do not scan profiles [User Manual]	Allow at most 1 X sequence characters to match a conserved position in the nattern
Show only sequences with at least hit(s) Maximum of matched sequences 1000	match mode greedy, overlaps, no includes (for patterns, see help)
Output format Graphical rich view 🔻	

Interpro

http://www.ebi.ac.uk/interpro/

Database of protein families, domains and functional sites in which identifiable features found in known proteins can be applied to unknown protein sequences.

J. Craig Venter

Naming the Gene Product

- Assigning a functional name to a gene product in an automated fashion is still one of the major challenges in eukaryotic annotation.
- Protein databases have very heterogeneous formats for sequence headers.
- The number of database with curated protein names are small.
- Many gene names are the result of circular annotation of genome projects.
- Several analysis tools provide information in comments, but these cannot be easily parsed into meaningful names.
- Critical evaluation of names is fundamental for functional annotation.

J. Craig Venter

Potential Sources for Names and/or Comments

- Curated protein database which has experimental evidence (literature).
- Blast searches against protein databases (e.g., NR, UniProt-SwissProt, custom databases).
- Searches of structural and functional domains through HMM profiles (e.g., Pfam, TIGRfam).
- EC Number assignments for enzymes.
- Motifs identified as SignalP, TargetP, tmHMMs, and others.

Auto-naming Strategy

Assigning Enzyme Commission (EC) Number

- EC classification scheme is a hierarchical numerical classification based on the chemical reactions enzymes catalyze. http://www.chem.qmul.ac.uk/iubmb/enzyme/
- Every enzyme code consists of four numbers separated by periods.
 Ex.- EC 1.1.1.1- alcohol dehydrogenase
- EC numbers may be assigned computationally.
- There are many available tools and methods for predicting EC numbers and pathways.
- Common problems:
 - The computational method may not be specific for assigning EC number to the enzymes. It may be accurate to decide an enzyme family for a gene rather than a specific enzyme. To be precise, the fourth number (Ex. 1.1.1-) is often left blank.

Tools for EC Number Assignment

 Priam profiles: Profiles are built from the sequences available in the ENZYME database based on positionspecific score matrices (PSSMs) automatically tailored for each enzyme entry.

(http://genopole.toulouse.inra.fr/bioinfo/priam)

- Pfam domains: HMM profiles built from the cross species multiple enzyme sequences.
 - Difficult to assign EC numbers on multi-domain proteins or for bifunctional enzymes.
- Map the EC numbers from the enzymes of an evolutionarily closely related organism based on the homology.

View Pathways

- Graphical interface for users to visualize the substrates, final products and steps in a completed pathway catalyzed by an enzyme (gene).
 - > KEGG:

http://www.genome.jp/kegg/tool/search_pathway.html

- > MetaCyc: http://metacyc.org
- > Pathway Tools: http://bioinformatics.ai.sri.com/ptools

J. Craig Venter

An Example of Pathway Interface

Superclasses: Biosynthesis -> Carbohydrates -> Polysaccharides -> Glucogen and starch biosynthesis

Three Types of GO Terms

- ♦ Gene Ontology (Gene Ontology Consortium[™]) is a method used to structure biological knowledge using a dynamic controlled vocabulary across organisms.
- Molecular function
- Biological process
- Cellular component

J. Craig Venter

Automated Gene Ontology (GO) Assignments

- Automated GO is primarily done by homology searches using different scripts.
- GO terms are often transferred based on orthology from a closely related organism which has manually curated GO assignments.
- Mapping of GO terms from other sources as Interpro, EC numbers, and Pfam domains which have significant similarity, is also a valid computational method.

Why Compute Protein Families?

- To group proteins by probable function.
- To identify possible gene structure problems.
- To identify evolutionary relationships between protein families.
- ♦ To ensure consistency of annotation.

JCVI Domain Based Protein Families

- Steps in generation protein Families:
 - > Identify Pfam/TIGRfam domains.
 - Identify homology-based domain-like regions from the proteome by all verses all blast. searches with a significant identity and length cut off.
 - > Organize the proteins into families based on similar domain composition.

J. Craig Venter

Families Based on Domain Composition

protein sequences containing Pfam and/or blastP based domains Families grouped based on type and number of domains

MCL Protein Clustering

- Method for clustering proteins into related groups, which are termed 'protein families'.
- Uses Markov clustering method, which is achieved by analyzing similarity patterns between proteins in a given dataset.

Superfamily

http://supfam.mrc-Imb.cam.ac.uk/SUPERFAMILY/

Superfamily 1.69 HMM library and genome assignments server

New 1.73 HMM library and genome assignments

Search SUPERFAMILY

SUPERFAMILY Description

- A superfamily groups together domains of different families which have a common evolutionary ancestor based on structural, functional and evolutionary data.
- SUPERFAMILY domain assignments are generated using an expert curated set of profile HMMs. All models and structural assignments are available for browsing and download. Sophisticated tools are provided for the analysis of superfamily (and family) domain assignments.
- The SCOP domains used as seed sequences to build the SUPERFAMILY models are available for download.

Summary of Automated Functional Annotation

- High Throughput automated functional annotation is done through the series of scripts using different software tools.
- Pipelines are configured differently for each project, depending on the requirements.
- There is always a hands-on component in eukaryotic functional annotation for the optimum performance of the tools.
- Critically evaluate the computationally derived annotation through manual curation.

J. Craig Venter